Electric-power transmission
Electric-power transmission is the bulk transfer of electrical energy, from generating power plants to electrical substations located near demand centers. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. Transmission lines, when interconnected with each other, become transmission networks. In the US, these are typically referred to as "power grids" or just "the grid." In the UK, the network is known as the "National Grid." North America has three major grids, the Western Interconnection, the Eastern Interconnection and the Electric Reliability Council of Texas (ERCOT) grid, often referred to as the Western System, the Eastern System and the Texas System.
Most transmission lines use high-voltage three-phase alternating current (AC), although single phase AC is sometimes used in railway electrification systems. High-voltage direct-current (HVDC) technology is used for greater efficiency in very long distances (typically hundreds of miles (kilometres), or in submarine power cables (typically longer than 30 miles (50 km). HVDC links are also used to stabilize against control problems in large power distribution networks where sudden new loads or blackouts in one part of a network can otherwise result in synchronization problems and cascading failures.
Electricity is transmitted at high voltages (110 kV or above) to reduce the energy lost in long-distance transmission. Power is usually transmitted through overhead power lines. Underground power transmission has a significantly higher cost and greater operational limitations but is sometimes used in urban areas or sensitive locations.
A key limitation in the distribution of electric power is that, with minor exceptions, electrical energy cannot be stored, and therefore must be generated as needed. A sophisticated control system is required to ensure electric generation very closely matches the demand. If the demand for power exceeds the supply, generation plants and transmission equipment can shut down which, in the worst cases, can lead to a major regional blackout, such as occurred in the US Northeast blackouts of 1965, 1977, 2003, and in 1996 and 2011. To reduce the risk of such failures, electric transmission networks are interconnected into regional, national or continental wide networks thereby providing multiple redundant alternative routes for power to flow should (weather or equipment) failures occur. Much analysis is done by transmission companies to determine the maximum reliable capacity of each line (ordinarily less than its physical or thermal limit) to ensure spare capacity is available should there be any such failure in another part of the network.
Overhead transmission
High-voltage overhead conductors are not covered by insulation. The conductor material is nearly always an aluminium alloy, made into several strands and possibly reinforced with steel strands. Copper was sometimes used for overhead transmission but aluminium is lighter, yields only marginally reduced performance, and costs much less. Overhead conductors are a commodity supplied by several companies worldwide. Improved conductor material and shapes are regularly used to allow increased capacity and modernize transmission circuits. Conductor sizes range from 12 mm2 (#6 American wire gauge) to 750 mm2 (1,590,000 circular mils area), with varying resistance and current-carrying capacity. Thicker wires would lead to a relatively small increase in capacity due to the skin effect, that causes most of the current to flow close to the surface of the wire. Because of this current limitation, multiple parallel cables (called bundle conductors) are used when higher capacity is needed. Bundle conductors are also used at high voltages to reduce energy loss caused by corona discharge.
Underground transmission
Electric power can also be transmitted by underground power cables instead of overhead power lines. Underground cables take up less right-of-way than overhead lines, have lower visibility, and are less affected by bad weather. However, costs of insulated cable and excavation are much higher than overhead construction. Faults in buried transmission lines take longer to locate and repair. Underground lines are strictly limited by their thermal capacity, which permits less overload or re-rating than overhead lines. Long underground cables have significant capacitance, which may reduce their ability to provide useful power to loads.
Bulk power transmission
Engineers design transmission networks to transport the energy as efficiently as feasible, while at the same time taking into account economic factors, network safety and redundancy. These networks use components such as power lines, cables, circuit breakers, switches and transformers. The transmission network is usually administered on a regional basis by an entity such as a regional transmission organization or transmission system operator.
Transmission efficiency is hugely improved by devices that increase the voltage, and proportionately reduce the current in the conductors, thus keeping the power transmitted nearly equal to the power input. The reduced current flowing through the line reduces the losses in the conductors. According to Joule's Law, energy losses are directly proportional to the square of the current. Thus, reducing the current by a factor of 2 will lower the energy lost to conductor resistance by a factor of 4.
This change in voltage is usually achieved in AC circuits using a step-up transformer. HVDC systems require relatively costly conversion equipment which may be economically justified for particular projects, but are less common currently.
A transmission grid is a network of power stations, transmission lines, and substations. Energy is usually transmitted within a grid with three-phase AC. Single-phase AC is used only for distribution to end users since it is not usable for large polyphase induction motors. In the 19th century, two-phase transmission was used but required either four wires or three wires with unequal currents. Higher order phase systems require more than three wires, but deliver marginal benefits.
The capital cost of electric power stations is so high, and electric demand is so variable, that it is often cheaper to import some portion of the needed power than to generate it locally. Because nearby loads are often correlated (hot weather in the Southwest portion of the US might cause many people to use air conditioners), electricity often comes from distant sources. Because of the economics of load balancing, wide area transmission grids now span across countries and even large portions of continents. The web of interconnections between power producers and consumers ensures that power can flow, even if a few links are inoperative.
The unvarying (or slowly varying over many hours) portion of the electric demand is known as the base load and is generally served best by large facilities (which are therefore efficient due to economies of scale) with low variable costs for fuel and operations. Such facilities might be nuclear or coal-fired power stations, or hydroelectric, while other renewable energy sources such as concentrated solar thermal and geothermal power have the potential to provide base load power. Renewable energy sources such as solar photovoltaics, wind, wave, and tidal are, due to their intermittency, not considered "base load" but can still add power to the grid. The remaining power demand, if any, is supplied by peaking power plants, which are typically smaller, faster-responding, and higher cost sources, such as combined cycle or combustion turbine plants fueled by natural gas.
Long-distance transmission of electricity (thousands of kilometers) is cheap and efficient, with costs of US$0.005–0.02/kWh (compared to annual averaged large producer costs of US$0.01–0.025/kWh, retail rates upwards of US$0.10/kWh, and multiples of retail for instantaneous suppliers at unpredicted highest demand moments).[7] Thus distant suppliers can be cheaper than local sources (e.g., New York City buys a lot of electricity from Canada). Multiple local sources (even if more expensive and infrequently used) can make the transmission grid more fault tolerant to weather and other disasters that can disconnect distant suppliers.
Long distance transmission allows remote renewable energy resources to be used to displace fossil fuel consumption. Hydro and wind sources cannot be moved closer to populous cities, and solar costs are lowest in remote areas where local power needs are minimal. Connection costs alone can determine whether any particular renewable alternative is economically sensible. Costs can be prohibitive for transmission lines, but various proposals for massive infrastructure investment in high capacity, very long distance super grid transmission networks could be recovered with modest usage fees.
Subtransmission
Subtransmission is part of an electric power transmission system that runs at relatively lower voltages. It is uneconomical to connect all distribution substations to the high main transmission voltage, because the equipment is larger and more expensive. Typically, only larger substations connect with this high voltage. It is stepped down and sent to smaller substations in towns and neighborhoods. Subtransmission circuits are usually arranged in loops so that a single line failure does not cut off service to a large number of customers for more than a short time. While subtransmission circuits are usually carried on overhead lines, in urban areas buried cable may be used.
There is no fixed cutoff between subtransmission and transmission, or subtransmission and distribution. The voltage ranges overlap somewhat. Voltages of 69 kV, 115 kV and 138 kV are often used for subtransmission in North America. As power systems evolved, voltages formerly used for transmission were used for subtransmission, and subtransmission voltages became distribution voltages. Like transmission, subtransmission moves relatively large amounts of power, and like distribution, subtransmission covers an area instead of just point to point.[
Contact: Ms. Lisa Xiang (Director) Email:lisa.haichung@hotmail.com
Whatsapp:+8613968382831 Add:Xiangshan Ningbo, Zhejiang China.
|
---|
|
|